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Abstract 
The current study modeled and simulated the dynamics of fluid flow and heat transfer for MRI- guided 
hyperthermia treatment. The blood flow along the artery was assumed to follow a New- tonian 
character. In the mathematical formulation, the flow was considered unsteady, laminar, incompressible, 
unidirectional, axisymmetric, and fully developed. Additionally, the effects of induced magnetic fields 
and Hall effects were deemed negligible. The study found that blood velocity and temperature 
significantly varied with the enhancement of magnetic strength, Reynolds number, Grashof number, and 
heat source parameter. In contrast, blood velocity showed a gradual variation with increasing Prandtl 
number and Eckert number. This study holds significant value for medical applications, offering a 
means to simulate various scenar- ios and providing a controlled, reproducible environment to test 
different parameters, optimize heating strategies, and predict patient-specific treatment responses. The 
model developed can be used to predict treatment outcomes, identify potential complications, and 
suggest optimized treatment protocols tailored to the anatomical and physiological characteristics of 
individual patients. 
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Introduction 
Targeting tumor tissue with precision while minimizing damage to surrounding healthy tissue remains a 
significant challenge in the effectiveness of MRI-guided hyperthermia treatments. The complexity of 
blood flow, tissue properties, and heat transfer necessitates accurate simulation and modeling to 
optimize treatment delivery. Thermal therapy involves exposing the body to elevated temperatures 
beyond the normal range, a process commonly referred to as hyperthermia. Even a slight increase in 
temperature—just a few degrees above normal—can lead to substantial biological changes, including 
cell death. Research has shown that hyperthermia can be one of the most potent modifiers of radiation 
treatments. When used in cancer treatment, hyperthermia involves subjecting tissues to controlled high 
temperatures to damage or destroy cancer cells. This approach leverages the fact that cancer cells are 
generally more heat-sensitive than normal healthy cells. At temperatures between 40°C and 45°C, 
cancer cells experience significant stress, leading to the breakdown of proteins, membranes, and DNA, 
which ultimately results in cell death (apoptosis). Hyperthermia impacts cells and tissues in various 
ways, not only by directly altering the physical properties of cellular components but also by 
influencing cellular responses. Conventional cancer treatments such as radiotherapy and chemotherapy 
have limitations, and their effectiveness can be enhanced when combined with complementary therapies 
like hyperthermia, which can produce a synergistic effect when used alongside radiation and 
chemotherapy. 
Magnetic Resonance Imaging (MRI) has become a crucial non-invasive imaging technique, with 
applications across various fields such as biology, engineering, and material science. MRI is particularly 
valued for its ability to provide distinct contrast between soft tissues, often surpassing the quality of CT 
imaging. Research has shown that in the human body, oxygenated blood is diamagnetic, while 
deoxygenated blood is paramagnetic. As the oxygen level in the blood fluctuates, its magnetic 
susceptibility also changes, leading to alterations in the MRI signal. Blood is a complex fluid containing 
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a variety of ions—electrically charged particles that play a vital role in regulating processes such as 
fluid balance, nerve function, muscle contraction, and pH levels. In the presence of strong magnetic 
fields, the movement and behavior of these ions can be influenced by the magnetic forces, as they 
experience a Lorentz force due to their charge and motion within the field. 
 
Numerous researchers have investigated fluid flow along the arterial wall. One study by [8] modeled the 
blood flow dynamics in a constricted artery during hyperthermia cancer treatment, though it did not 
account for the effects of the magnetic field. In contrast, [9] conducted a numerical study on tapered 
arteries, focusing on the transient simulation of non-Newtonian bio-magnetic fluid dynamics of blood 
flowing through a stenotic artery under the influence of a transverse magnetic field. Their findings 
indicated that the resistance to flow increases with both the height of the stenosis and the strength of the 
magnetic field. Similarly, [10] explored the flow of blood mixed with copper nanoparticles through an 
inclined, overlapping stenosed artery under a magnetic field, drawing similar conclusions regarding the 
impact of both stenosis and magnetic fields on flow resistance. [11] also examined the effect of a 
uniform magnetic field on pulsatile non-Newtonian blood flow in an elastic stenosed artery, although 
this study did not consider the stenosis itself. Other significant contributions to this area of research 
were made by [12], [13], [14], and [15], who also studied the role of magnetic fields in blood 
flow.Bottom of Form 
To the best of my knowledge, the integration of fluid dynamics and heat transfer within the context of 
MRI-guided hyperthermia remains inadequately explored. Addressing this gap is crucial for 
establishing a more accurate and reliable framework for predicting thermal distribution, enhancing 
treatment planning, and ultimately improving therapeutic outcomes. This study seeks to overcome these 
limitations by formulating a comprehensive mathematical model that incorporates both fluid flow and 
heat transfer mechanisms. 
 
Model Formulation 
In this section we mathematically formulate the model. The following phases for model formu- 
lation were followed. See Fig. 1. 

In formulating the model, the following assumptions were considered: 

• The flow is unsteady, laminar, incompressible unidirectional, axisymmetric and full de- 
veloped 

• The fluid is Newtonian. In this regard, it is assumed that, the resistance to flow of the 
fluid is independent of the rate at which it is deformed. 

• The flow is subjected to a uniform transverse magnetic field of strength B0 

• The induced magnetic fields and hall effects are negligible. 

• Fluid flows in a cylindrical tube. 

Following [17] we can write the geometry of stenosis as 
 
 
 
 

 

H(z) = 

0, otherwise 
2z0 

(2.
1) 
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Figure 1: Phases of the Model Formulation 
 

and the pressure gradient  
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cos nt (2.2) 

where H(z) is the radius of the constricted artery, d is the radius of the normal artery, 4z0 is the 
length of stenosis, 2σ is the maximum protuberance of the stenotic form of the artery wall, A0 

is the steady state part of the pressure gradient, A1 is the amplitude of the oscillatory part and 
n = 2πf where f is the heart pulse frequency. 

Under mentioned considerations, the governing continuity, momentum and energy equations 
become: 

∂u 
= 0 (2.3) 

∂z 

∂u ∂P 
 

1 ∂u ∂2u
 

2 
 

 

 

∂T 
ρcp 

∂t 
= k 

1 ∂T 
+

 

r ∂r 

∂2T 

∂r2 

∂u 2 
+ µ 

∂r 
+ q0(T − T0) (2.5) 

Subject to the boundary and initial conditions 
 

∂u ∂T 
= 

∂r ∂r 
= 0 at r = 0 (2.6) 

u(r, t) =0, T (r, t) = Tw at r = H(z) (2.7) 
u(r, 0) =f (r), T (r, 0) = T0 (2.8) 
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∂τ 
=A0 + A1 cos mτ + Re ∂r2 
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Figure 2: Thermal-therapy treatment [16] 
 

Figure 3: Geometry of the problem 

 
For convenience, the following non-dimensional variables were introduced: 

θ = 
T − T0  

, z∗ = 
z 

, e∗ = 
σ 

, u∗ = 
u 

, τ = 
tU 

, r∗ = 
r
 

Tw − T0 z0 r U d2 d 
ρd2n ∗ H(z) ∗ ρd3 ∗ ρd3 

m = , H = 
µ d 

, A0 = A0 
µ2 

, A1 = A1 
µ2 

(2.9) 

using eq. 2.9 in eqs. 2.3 − 2.8 we get the resulting equations in simplified form (dropping 
asterisks) as: 

 
 

∂u 
=0 (2.10) 

∂z 

∂u  1 
  

∂2u 1 ∂u
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 + Qθ (2.12) 
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ρaU 

µ 
, Ec = 

U 2 
 

 

cp(Tw − T0) 
, Pr = 

cpµ 

k 
, Q = 

q0d 

ρcpU 
and Gr = 

gβT (T − T0)ν 

U 3 
are 

respectively Reynolds number, Eckert number, Prandtl number, Heat source parameter, M = 

B U 
σ 

Hartman number and Grashof number. 
 
The dimensionless form of the stenosis geometry is given as 

(
1 − e 

h
1 + cos

  πz i 
if −2 ≤ z ≤ 2 

 

Besides, the dimensionless form of the boundary and initial conditions become; 
 

 
u(r, 0) = u0, T (r, 0) = T0, (2.14) 
u(r, τ ) = T (r, τ ) = Tw on r = H(z) (2.15) 
∂u(r, τ ) 

= 
∂r 

∂T (r, τ ) 
 

 

∂r 
= 0 on r = 0 (2.16) 

Solution of the Model Equations 
Radial Coordinate Transformation 
In this section, we first introduce the radial coordinate transformation. The variable ξ such that 

r 
ξ = 

R(z) 
. This has an effect of immobilizing the arterial wall in the transformed coordinate ξ. 

Incorporating this transformation we get the following governing flow equations. 

∂u  1 
 

∂2u 1 ∂u
 

M 2 
 

∂θ  1 
 

∂2θ 
 

 

1 ∂θ
 
  Ec 

  
∂u

  2 

 

The boundary and initial conditions for the above equations become: 

u(ξ, 0) = u0, θ(ξ, 0) = θ0 (3.3) 
w(ξ, τ ) = 0 θ(ξ, τ ) = θw, on ξ = 1 (3.4) 
∂u(ξ, τ ) 

 
 

∂ξ 

∂θ(ξ, τ ) 
= 

∂ξ 
= 0 on ξ = 0 (3.5) 

 
Now using the axial velocity and the temperature of the streaming fluid we determine the the 
skin friction Cf and the Nusselt number Nu as follows: 

 

1 ∂u 
Cf 

 

H ∂ξ 

 

 
ξ=1 

 

1 ∂θ 
Nu = − 

H ∂ξ 

 
Explicit Finite Difference Method 

 
 
ξ=1 

 

The eqs. 3.1 − 3.7 are implemented using the well-known explicit finite difference method. 
Using this method we directly compute the solution at the next time step using known values 

= 

  

H(z) = 
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i+1,j 1 j ReH2 (∆ξ)2 

ReH2η 
— Re ui,j + Grθi,j (3.11) 

i+1,j PrH2 (∆ξ)2 PrH2ξ 2∆ξ 

(Re)2H2 2∆ξ 

from the current time step, without the need to solve a system of equations. The explicit finite 
difference method is conditionally stable, meaning that the time step ∆τ must be small enough 
to ensure stability. This condition is often related to the CFL condition (Courant-Friedrichs- 
Lewy condition), which constrains the relationship between the time step ∆τ and the spatial step 
∆ξ to prevent numerical instability. In this regard therefore, it was ensured that the condition 

∆τ 
0 < 

(∆ξ)2 
≤ 0.5 is well taken into consideration. Besides, the Central difference formula is 

used to express the spatial derivatives and the forward difference formula is applied to the time 
derivatives. See equations below: 

 
 
 
 
 
Similarly; 

∂u 
= 

ui+1,j − ui−1,j 
,
 

∂ξ 2∆ξ 
 

 
∂θ 

= 
θi+1,j − θi−1,j 

,
 

∂ξ 2∆ξ 

∂2u 
 

 

∂ξ2 

 

 

∂2θ 
 

 

∂ξ2 

= 
ui+1,j + 2ui,j − wi−1,j 

(∆ξ)2 

 

 

= 
θi+1,j + 2θi,j − θi−1,j 

(∆ξ)2 

(3.8) 
 
 

 
(3.9) 

 

For time derivative we have: 

∂u 
= 

ui,j+1 − ui,j 
, 

∂θ 
= 

θi,j+1 − θi,j 

 

 
(3.10) 

∂τ k ∂τ k 

We also define ξ(i) = (i − i)∆ξ and τj = (j − 1)∆τ = (j − 1)k. Incorporating equations 
3.8 − 3.10 into eqs 3.1 − 3.7 we have: 

 
u =u 
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  kEc 
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Skin friction:  
 

1 
(Cf )i = 

 
 

   
ui+1,j − ui−1,j   

 

 

 
(3.13) 

 
 
Nusselt number: 

Hi 2∆ξ  
ξ=1 

 
1 

(Nu)i = 

   
θi+1,j − θi−1,j   

 

 
(3.14) 

Hi 2∆ξ  
ξ=1 

Graphical Results and Discussion 
In this section we discuss in a detail the effects of different parameters. Both velocity and 
temperature profiles are plotted and discussed. Besides, Reynolds, Hartman, Grashof, Prandtl 
and Eckert numbers were varied to see their effect on the profiles. skin friction and Nusselt 

i 

i i 

i i i 

i,j 0 

2∆ξ 

i,j 

+ Qθi,j (3.12) 



ANNORD MWAPINGA            

number are also simulated and discussed. 
 

 

Figure 4: Effect of magnetic field on velocity profile 

 

Figure 5 
The effect of magnetic field on fluid’s velocity is shown on Fig. 4. It is revealed that the 
blood’s velocity decreases as the Hartman number increases. Physically, magnetic field exerts 
the Lorentz force which has the tendency to resist motion. This results to the decline in velocity. 
In this regard therefore, magnetic fields can be used practically in situations where the velocity 
of the blood need to be minimized. This include for example during post surgical recovery 
especially after vascular surgery. Reducing blood’s velocity reduces the risk of complications 

such as bleeding. Fig. 5 shows the effect of increasing the Reynolds number on velocity. The 
reynolds number is a non-dimensional number which represents the ration of inertial force to 
viscous force. Increasing the Reynolds number implies the inertial force increases that viscous 
force. as the inertial force become more dominant than the viscous force, the blood’s velocity 

increases. 
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Figure 6: Effect of Grashof number on velocity profile 

 

Figure 7: Effect of heat source parameter on velocity profile 
 
Increase in Grashof number increases the velocity profile. This is shown on Fig. 6. Grashof 
number is a dimensionless number that quantifies the relative importance of buoyancy forces 
to viscous forces in a fluid flow, particularly in natural convection. When Grashof number in- 
creases, it promotes faster fluid motion as warmer, less dense blood rises or moves upward due 
to the buoyant force. The effect of heat source parameter Q is illustrated on Fig. 7. Increase 
in heat source parameter raises the temperature which in-turn, the raised temperature causes 
vasodilation (widening of blood vessels), which increases blood flow velocity. Vasodilation 
lowers the resistance to blood flow in the vessels, allowing blood to flow more easily. Prandtl 
number and Eckert number both have shown to enhance the velocity of blood. The Prandtl num- 
ber is defined as the ratio of kinematic viscosity to thermal diffusivity. The effect of increasing 
it, is shown on Fig. 8.The effect of Eckert number is shown on Fig. 9. 
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Figure 8: Effect of Prandtl number on velocity profile 

 

Figure 9: Effect of Eckert number on velocity profile 
 
The Prandtl number is a measure of how a fluid behaves when it flows and how it transfers heat. 
It compares the thickness of the fluid’s sticky layer, (this is always is related to viscosity) to the 
thickness of the layer where heat is transferred. Fig. 8 shows the effect of Prandtl number on 
velocity profile. It is observed that, the velocity is enhanced as the Prandtl number increases. 
Similar results was illustrated by [18]. The same is observed when Eckert number increases. 
The Eckert number is a dimensionless number that characterizes the relative importance of the 
kinetic energy of the fluid flow to its thermal energy. When Eckert number is increased, the 
flow is dominated by kinetic energy which increases the fluids velocity, that is an increase in the 
Eckert number leads to an increase in velocity because the flow becomes more dominated by 
kinetic energy and less by thermal energy. As the system becomes less efficient at transferring 
heat (due to the imbalance between kinetic and thermal energy), the flow velocity tends to 
increase. 
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Figure 10: The transient effects of velocity profile 
 
 

 

 
 
 
 

Figure 11: The transient effects of temperature profile 
 
The transient effects of both velocity and temperature profiles are shown on Figs. 10 and 11. 
The graph show that the velocity decreases from the center of the artery radial distance ξ = 0 

towards the arterial wall ξ = 1 where the velocity is zero. This is due to the fact that at the 
arterial wall, we have a no slip condition. Besides, it is shown that the velocity increases as 
time increases. This is due to the presence of heat source which enhances the flow velocity. 
On the other hand we see that temperature increases with time (see Fig. 11). The increase in 
temperature is due to the presence of the external heat source which directly enhances fluid’s 

temperature. This temperature is responsible for killing the cancer cells. 
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Figure 12 

 

Figure 13 
 
Figs. 12 and 13 portray the variation of temperature due to the changes in heat source and 
Eckert number respectively. In Fig. 12 we see that, as heat source parameter enhances, the tem- 
perature profile increases. As the intensity or temperature of the external heat source increases, 
more thermal energy is transferred into the blood, which results in an increase in the blood 
temperature. Besides, Fig. 13 we observe that similar situation when Eckert number increases. 
Increasing the Eckert number leads to the fluid’s kinetic energy becoming more significant com- 
pared to its thermal energy. Such relationship suggests that as the velocity of the fluid increases, 
there is more dissipation of energy into heat, which can raise the local temperature. 
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Figure 14 

 

Figure 15 
 
The effect of Magnetic parameter (Hartmann number) is shown in Fig. 14. The temperature 
is observed to diminish as magnetic strength increases. This is due to the fact that when the 
Hartmann number increases, the effects of the magnetic field become more significant compared 
to the viscous forces. In the presence of a strong magnetic field, the flow becomes more laminar, 
and the convective heat transfer is reduced because the magnetic field suppresses the fluid’s 

movement. With an increase in Reynolds number, the velocity of the blood tends to increase as 
well. This increase in velocity means there is more kinetic energy in the system. This kinetic 
energy can be dissipated into heat via viscous dissipation. As the velocity of blood increases, 
more of this kinetic energy gets converted into heat, causing the temperature to rise. this is 
revealed in Fig. 15. 
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Figure 16 

 

Figure 17 
 
The effect of Grashof number on temperature is shown in Fig. [? ]. it is shown that as the 
Grashof number increases, the boundary layer (the thin region near the surface where tempera- 
ture gradients are steep) becomes thicker, but the overall heat transfer improves due to stronger 
convective currents. The increased convection enhances the transport of heat, allowing the fluid 
to redistribute thermal energy more effectively. Fig. 17 shows the variation of temperature due 
to changes in Prandtl number. The temperature is observed to be enhanced as a result of increas- 
ing Prandtl number. Increasing the Prandtl number typically means that the fluid has a lower 
thermal diffusivity compared to its momentum diffusivity. This leads to thicker thermal bound- 
ary layers and a slower rate of heat transfer to or from the blood. As a result, the temperature 
may rises. 
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Figure 18: Effect of Q on Cf Figure 19: Effect of M on Cf 
 
 
 
 

 

Figure 20: Effect of Re on Cf Figure 21: Effect of Gr on Cf 
 

 
Skin friction refers to the shear stress exerted by a fluid on the surface it flows over, typically 
due to the viscosity of the fluid. This concept is crucial in understanding how fluids interact 
with surfaces. In blood flow, it plays an important role in determining the forces acting on 
the walls of blood vessels. Figs. 18− 21 show the dynamics of friction friction as a result of 
varying heat source parameter Q, Magnetic parameter M, Reynolds number Re, and the Grashof 
number Gr. It is shown that heat source parameter enhances the skin friction. As heat increases, 
sweat evaporation rates increases, leading to dry skin, which eventually increases friction. If 
the heat source is intense or prolonged, sweat evaporates too quickly or may not be produced at 
a sufficient rate, leading to dry skin, which increases skin friction, (see Fig. 18). Besides, Fig. 
19 show different pattern when the Hartman number M increases. The skin friction is observed 
to decline with increasing in magnetic parameter M (The Hartman number). Magnetic fields 
can cause a reduction in fluid velocity near the skin surface due to the magneto-hydrodynamic 
effect (MHD). This lowers the skin shear stress, which directly correlates to a reduction in skin 
friction. Generally, the Hartman number is associated with the dominance of magnetic forces 
over viscous forces. As the Hartman number increases, it indicates that the magnetic forces are 
becoming more dominant relative to the viscous forces in the blood. The Skin friction is also 
observed to increase with increase in Reynolds number and Grashof number. see Figs. 20 and 
21. 
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Figure 22: Effect of Q on Nu 
 
 

 

Figure 23: Effect of Ec on Nu 

 

Figure 24: Effect of Pr on Nu 

 
The Nusselt number (Nu) is a measure of how effectively heat is transferred by convection 
compared to heat transfer by conduction in a fluid. Figs (22 - 24) display the effect of varying 
heat source parameter, Eckert number and Prandtl number on Nusselt number. It is shown that, 
the Prandtl number increases with increase in heat source, Eckert number and Prandtl number. 
Fig. 22 we see that when the heat source intensifies, the convective heat transfer coefficient 
increases, which causes an increase in the Nusselt number. That is, if heat sources, it basically 
increases the thermal boundary layer thickness near the heat source. This generally increases the 
Nusselt number, since more heat is transferred from the surface into the blood. Fig. 23 reveals 
that, if Ec increases, the flow is becoming more energy-rich, so the convective heat transfer 
improves, and the Nusselt number increases. Besides,for higher Prandtl numbers, the Nusselt 
number tends to increase, as the thicker thermal boundary layer is less effective at transferring 
heat, leading to an increased convective heat transfer rate (See Fig. 24). 
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Conclusion 
This study focused on the modeling and simulation of fluid flow dynamics and heat transfer in 
the context of MRI-guided hyperthermia treatment. The findings from the simulations provided 
valuable insights into the interplay between various parameters affecting both the velocity and 
temperature profiles within the system. 

As anticipated, the velocity profile of blood was found to decrease with an increase in magnetic 
field strength. Conversely, an increase in the Reynolds number, Grashof number, heat source 
parameter, Prandtl number, and Eckert number led to an enhancement in blood velocity. Sim- 
ilarly, the temperature profile was observed to increase with higher values of the heat source 
parameter, Eckert number, Reynolds number, Grashof number, and Prandtl number. However, 
magnetic field strength exhibited an opposing effect, with higher magnetic strengths resulting 
in a reduction of the temperature profile. 

In terms of skin friction and Nusselt number, similar trends were observed: both skin friction 
and Nusselt number increased with higher values of the heat source parameter, Eckert num- 
ber, Reynolds number, Grashof number, and Prandtl number, while they decreased as magnetic 
strength increased. These results offer significant implications for optimizing hyperthermia 
treatment parameters in MRI-guided procedures, particularly in understanding the effects of 
magnetic field strength and thermal parameters on fluid dynamics and heat transfer. the Finite 
difference method was used to tackle the model equations, which were later simulated using 
MATLAB software. 
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